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Data streams
Optional Subtitle

Great amount of data generated. Robot proximity sensors, encoders,
cameras.

The data changes over time, as the robot environment is changing, or
when it is mapping a new location. Shift and drift.

Methods must be both computationally and storage efficient. They
have to be run onboard the robot, with limited capacity.
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Anomaly detection

Data point which does not conform to expected pattern

Can be noise or the underlying distribution might have changed

A really hard problem, since we have bounded rationality. Need to
make decisions in the present, with limited data and computation
time.
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Anomaly detection

Two methods used:

Anomaly detection based on membership, with a variation of fuzzy
k-means clustering (PCM)

σ gap principle, introduced by Dr Plamen Angelov
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Clustering

Unsupervised machine learning

Reduces the data dimensionality

k-means clustering, each cluster is represented by a point, reduces n
data points to k

k-means makes handling big-data easier
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K-means clustering

Divides the data space into clusters, the boundaries depend on the
distance metric we use

Figure: 3-means algorithm, where the data is 3 Gaussian distributions
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Anomaly detection based on membership

This method detects anomalies during clustering. We make use of
possibilistic fuzzy K-means clustering for this approach.

Fuzzy K-means assigns each point partially to each clusters, i.e. how
much a point belongs to one of the K clusters.

Membership are values between 0 and 1.
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Anomaly detection based on membership

Algorithm:

1 Calculate membership of each data point to each cluster at each
iteration.

2 Check if sum of membership to each cluster is greater than 1/K.(Here
K is number of clusters).

3 IF yes, then update the clusters at the next iteration.

4 ELSE ignore the data points with sum of membership less than 1/K.
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Anomaly detection based on membership

We made use of artificial drifting data with anomalies created at a specific
time.

VIDEO
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Anomaly detection based on membership

For fuzzy k-means clustering we use K = 4, which is one of the
presumptions of our algorithm.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S. Pattar, Z. Pasztori (University of Genova)Unsupervised learning in evolving environments EMARO, 2016-2017 12 / 26



Anomaly detection based on membership

With the basic fuzzy k-means clustering, the centroids shift due to the
presence of anomalies.
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Figure: Anomalies causing centroids to shift
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Anomaly detection based on membership

Once the algorithm is implemented, data points with sum of membership
less than 1/K are detected and ignored.
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Figure: Anomalies ignored by the algorithm

VIDEO
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σ gap principle

This algorithm is useful in detecting anomalies before clustering or any
other process. The following characteristics are introduced in the algorithm
from TEDA (Typicality and Eccentricity Data Analysis) framework:

Accumulated proximity, π: sum of distaces to each data point from
every data point.

πs(xj) = πjs =
s∑

i=1

dij s > 1

where dij denotes a distance measure between data samples. We used
eucledian distance.

Eccentricity, ξ: Quotient of accumulated proximity of one point and
sum of all accumulated proximities.

ξjs =
2πsjs∑s
i=1 πis

s∑
i=1

πis > 0
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σ gap principle (contd.)

Normalized eccentricity, ζ

ζ =
(xs − µs)2

2sσ2s
+

1

2s

where, variance, σ2s

σ2s =
s∑

i=1

(xi − µs)T (xi − µs)

s
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σ gap principle

The σ gap condition is very intuitive and is defined as follows:

IF(∆ζ1,2 > n/s)THEN(x1 is an outlier)
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σ gap principle

Algorithm:

1 Calculate normalized eccentricity of a point.

2 Arrange the points with the maximum normalized eccentricity, x1

second maximum normalized eccentricity, x2, etc. in decreasing order.

3 Check the ”σ gap” condition.

4 If it is satisfied, declare the point x1 an outlier.
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σ gap principle

Its advantages over traditional ”nσ” approaches are:

It does not need any presumptions on the data.

It can find anomalies with dataset as small as 3 samples (Angelov
2014).
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σ gap principle

We made use of the same data as used by the reference paper. As seen
below, the traditional ”nσ” approach fails to detect the anomaly.
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Figure: Real rainfall data from Bristol, UK, first two weeks of January, 2014 [7,14].

S. Pattar, Z. Pasztori (University of Genova)Unsupervised learning in evolving environments EMARO, 2016-2017 21 / 26



σ gap principle

But the σ gap principle successfully detects the anomaly even in a small
data-set.
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Figure: The σ gap principle is illustrated on the simple 1D rainfall data from the
first couple of weeks in South-West UK.
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σ gap principle

This algorithm was also tested on our own artificial dataset, but which
needed a sliding window of size 31. And it successfully detected the
anomaly.
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Figure: The σ gap principle illustrated on the artificial data at the time when
anomalies are created.
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Summary

Anomaly detection based on membership

Pros

Detects anomalies during clustering of data.
Online detection of anomalies of live streaming data.

Cons

Has all the problems associated with clustering algorithms, such as
selection of number of clusters.
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Summary

”σ gap” principle

Pros

does not need any presumptions on the data such as used in the
traditional ”nσ” approaches.
It can find anomalies with datasets as small as 3 samples.

Cons

To implement in on data streams, the window size needs to be
pre-assigned.
Adds an extra step of computation.
Difficulties with live data streams where the data needs to clustered or
classified on-line.
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Thank you for your attention. Any
questions?
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